FP-BNN: Binarized neural network on FPGA

نویسندگان

  • Shuang Liang
  • Shouyi Yin
  • Leibo Liu
  • Wayne Luk
  • Shaojun Wei
چکیده

Deep neural networks (DNNs) have attracted significant attention for their excellent accuracy especially in areas such as computer vision and artificial intelligence. To enhance their performance, technologies for their hardware acceleration are being studied. FPGA technology is a promising choice for hardware acceleration, given its low power consumption and high flexibility which makes it suitable particularly for embedded systems. However, complex DNN models may need more computing and memory resources than those available in many current FPGAs. This paper presents FP-BNN, a binarized neural network (BNN) for FPGAs, which drastically cuts down the hardware consumption while maintaining acceptable accuracy. We introduce a Resource-Aware Model Analysis (RAMA) method, and remove the bottleneck involving multipliers by bit-level XNOR and shifting operations, and the bottleneck of parameter access by data quantization and optimized on-chip storage. We evaluate the FP-BNN accelerator designs for MNIST multi-layer perceptrons (MLP), Cifar-10 ConvNet, and AlexNet on a Stratix-V FPGA system. An inference performance of Tera opartions per second with acceptable accuracy loss is obtained, which shows improvement in speed and energy efficiency over other computing platforms. © 2017 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Comparison of Binarized Neural Network with Convolutional Neural Network

Deep learning is a trending topic widely studied by researchers due to increase in the abundance of data and getting meaningful results with them. Convolutional Neural Networks (CNN) is one of the most popular architectures used in deep learning. Binarized Neural Network (BNN) is also a neural network which consists of binary weights and activations. Neural Networks has large number of paramete...

متن کامل

Design Automation for Binarized Neural Networks: A Quantum Leap Opportunity?

Design automation in general, and in particular logic synthesis, can play a key role in enabling the design of application-specific Binarized Neural Networks (BNN). This paper presents the hardware design and synthesis of a purely combinational BNN for ultra-low power near-sensor processing. We leverage the major opportunities raised by BNN models, which consist mostly of logical bit-wise opera...

متن کامل

Build a Compact Binary Neural Network through Bit-level Sensitivity and Data Pruning

Convolutional neural network (CNN) has been widely used for vision-based tasks. Due to the high computational complexity and memory storage requirement, it is hard to directly deploy a full-precision CNN on embedded devices. The hardware-friendly designs are needed for re-source-limited and energy-constrained embed-ded devices. Emerging solutions are adopted for the neural network compression, ...

متن کامل

Embedded Binarized Neural Networks

We study embedded Binarized Neural Networks (eBNNs) with the aim of allowing current binarized neural networks (BNNs) in the literature to perform feedforward inference efficiently on small embedded devices. We focus on minimizing the required memory footprint, given that these devices often have memory as small as tens of kilobytes (KB). Beyond minimizing the memory required to store weights, ...

متن کامل

Bitwise Neural Networks for Efficient Single-Channel Source Separation

We present Bitwise Neural Networks (BNN) as an efficient hardware-friendly solution to single-channel source separation tasks in resource-constrained environments. In the proposed BNN system, we replace all the real-valued operations during the feedforward process of a Deep Neural Network (DNN) with bitwise arithmetic (e.g. the XNOR operation between bipolar binaries in place of multiplications...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 275  شماره 

صفحات  -

تاریخ انتشار 2018